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Abstract

A new class of models for inhomogeneous spatial point processes is introduced.
These locally scaled point processes are modifications of homogeneous template point
processes, having the property that regions with different intensities differ only by a scale
factor. This is achieved by replacing volume measures used in the density with locally
scaled analogues defined by a location-dependent scaling function. The new approach is
particularly appealing for modelling inhomogeneous Markov point processes. Distance-
interaction and shot noise weighted Markov point processes are discussed in detail. It is
shown that the locally scaled versions are again Markov and that locally the Papangelou
conditional intensity of the new process behaves like that of a global scaling of the
homogeneous process. Approximations are suggested that simplify calculation of the
density, for example, in simulation. For sequential point processes, an alternative and
simpler definition of local scaling is proposed.
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1. Introduction

Point patterns with nonhomogeneous intensity are observed quite frequently in nature and
technology. For example, the number of plants per unit area in a natural environment depends
on environmental conditions and topology and therefore maps showing plant locations on larger
regions with changing conditions usually look inhomogeneous. In plant and animal tissue, cell
size and, correspondingly, cell number often depend on the distance to the boundary of an
organ. Many modern materials are designed with structural inhomogeneity, imitating natural
structures in order to improve functional properties. An example is the bronze sinter filter
shown in Figure 1. The data were analysed in [6]. The filter consists of almost spherical bronze
particles with diameters that decrease along an axis which marks the filtering direction. Since the
particles are densely packed, the number of particles per unit volume increases as the diameters
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FIGURE 1: (a) Section of a bronze sinter filter with a gradient in particle size and number. (b) Centres of
the particle profiles. Two enlargements from the top and bottom, containing about the same number of
points, show similar geometry.

decrease. This is also observable on sections parallel to the directions of inhomogeneity: the
centres of the particle section profiles form an inhomogeneous point pattern.

While it is easy to model inhomogeneous point patterns with independently positioned
points by inhomogeneous Poisson point processes, situations as shown in Figure 1 require
more sophisticated approaches. This pattern is characterized by repulsive interaction between
the points due to the fact that it results from a packing of spheres. The packing is of similar
volume fraction and similar geometry in regions with larger and with smaller sphere diameters.
Therefore, regions with large sphere diameters look like scaled versions of regions with small
diameters and vice versa. A similar effect can often be observed in nature, e.g. in plant
communities where number density is governed by environmental conditions. For example,
desert plants tend to form regular patterns with varying scale, such that distances between plants
are smaller in densely covered regions. Such point patterns also appear homogeneous up to a
local scale factor.

In recent years, various models have been suggested for inhomogeneous point processes with
interaction. Since Markov point processes are very useful for modelling interaction in homoge-
neous point patterns, it is natural that they are used as starting points for inhomogeneous models.
The survey by Jensen and Nielsen [9] discusses three ways of introducing inhomogeneity into
a Markov model. As will be explained in more detail in Section 2, homogeneous Markov
point processes are defined by a density with respect to the unit rate Poisson point process. A
straightforward idea is therefore to define an inhomogeneous process by the same density (up
to a constant factor) but with respect to an inhomogeneous Poisson point process [14], [12].
Inhomogeneity can also be obtained by location-dependent thinning [2], or by transformation
of a homogeneous Markov point process [8].

In these three cases, the local geometry of the point pattern changes with intensity. This is
illustrated in Figure 2, which shows realizations of inhomogeneous hard-core point processes
obtained by the three methods. In order to obtain patterns that appear homogeneous up to a
scale factor, range and strength of interaction have to be adapted to intensity. However, this is
not accomplished by the first approach where the interaction between points does not depend on
their locations; see Figure 2(a). Thinning, on the other hand, in general destroys the interaction
structure. This leads to a Poisson-like appearance of sparse regions; see Figure 2(b). Finally,
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FIGURE 2: Inhomogeneous hard-core point patterns obtained by (a) defining the density with respect to

an inhomogeneous Poisson point process, (b) inhomogeneous independent thinning, (¢) transformation

of coordinates. Note that dense and sparse regions differ in geometry. The parameters were chosen such
that the processes have similar intensity to the example of Figure 1.

@ - G

FIGURE 3: (a) Homogeneous template hard-core process and (b) inhomogeneous process obtained by
local scaling. Enlargements from dense and sparse regions of the inhomogeneous pattern look similar to
the template pattern.

transformation of coordinates not only introduces inhomogeneity but also local anisotropy, as
shown in Figure 2(c). Therefore, these three approaches are not suitable for modelling situations
as given in Figure 1.

In the present paper, we propose alternative inhomogeneous point process models that aim
to preserve local geometry. As in the three approaches discussed above, the inhomogeneous
model is obtained by modifying a homogeneous ‘template’ process that yields the interaction.
The idea is that inhomogeneity is obtained by scaling the template process with a location-
dependent scaling factor. A large scaling factor thereby results in low intensity and large
interaction distances, whereas a small scaling factor yields high intensity and small interaction
range. In regions with constant scaling factor, the point process should locally behave like a
scaled version of the template; see Figure 3.

The method and results presented in this paper are applicable to homogeneous template
processes that are given by a density with respect to a homogeneous Poisson point process;
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however, the main emphasis will be on Markov point processes. The definition of Markov point
processes and other prerequisites are recalled in Section 2.

Calculating the density function of a point process for a given point pattern usually implies
evaluating distances, areas, etc. The local scaling model proposed in Section 3 changes the
way such quantities are measured according to a location-dependent scaling function.

Sections 4 and 5 give a closer look at the important classes of distance-interaction and shot
noise weighted processes. In particular, we show that locally scaled Markov point processes
are again Markov, now with respect to a location-dependent relation. Useful approximations
of local scaling simplifying calculations, for example, in simulation are presented in Section 6.

For the class of sequential point processes, another approach to obtaining local scaling by
means of conditional intensities is suggested in Section 7. The paper concludes with a critical
discussion.

2. Prerequisites

Let B* denote the set of all full-dimensional bounded subsets of R* and write B for the
Borel o-algebra on R¥, We consider finite point processes X on sets X € BX. A point process
X on X is arandom variable taking values in Qy, the set of all finite subsets x = {x}, ..., x,}
ot X, equipped with the smallest o-algebra for which the number of points placed in a Borel
set B C X is a random variable.

We will concentrate on point processes X that have a density fx with respect to the restriction
of the unit rate Poisson point process I to X. A point process X on X is called homogeneous
if fy is the restriction to X of a translation-invariant function defined on all finite subsets of
RK: see [11).

Markov point processes in the sense of Ripley and Kelly [13] are particularly useful for
modelling point patterns with interaction. They are defined with respect to a symmetric and
reflexive relation ~ on X. Two points x), x» € X are said to be neighbours if x; ~ x5, and
a finite subset x C X is called a clique if all points in x are neighbours. Note that in graph
theory a clique is defined in a different way, cf. for example [7].

For a Markov point process, the hereditary condition holds, i.e. fx(x) > 0 implies that
Jx(y) > Oforall y € x. Furthermore, the Papangelou conditional intensity

fx(x U{x})
Ax(x]x) = fX(x) . fx(x) >0,
0, otherwise,

for x ¢ x, depends only on those points in x which are neighbours of x. If we let dx be an
infinitesimal region around x and v¥ (dx) the k-dimensional volume (Lebesgue measure) of dx,
then A(x | x)v* (dx) can be interpreted as the conditional probability of finding a point from the
process in dx given that the configuration elsewhere is x: see e.g. [16].

By the Hammersley~Clifford theorem (see [13]), a Ripley—Kelly Markov point process X
has density with respect to the unit rate Poisson point process of the form

fx(x) = I_[ (),  xe€Qx,

yex

where ¢ is an inlgractior} function, i.e. ¢(y) = 1 when the set yisnota clique. We will always
assume thu.t the interaction function ¢ is defined on al/ finite subsets of R*. A Markov point
process X is thereby homogeneous if ¢ is translation invariant (for a proof see [10, p. 29]).
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Before defining local scaling of point processes, let us consider global scaling with a constant
factor ¢ > 0. As a transformation of coordinates, global scaling maps a point process X on X
to a process X, = cX onthe set ¢X = {x : x/c € X}: see also [8].

The unit rate Poisson point process IT on X with intensity measure v is transformed into a
Poisson point process T, on ¢X with intensity measure ¢ =% v¥.

Let fx be the density of the original process with respect to I1. Then the scaled process X..
has density f )((C) with respect to I,

X
c

£ = fx(%)-

(The superscript (¢) in f)(f.) is used to indicate that the density is with respect to 1, instead of
I1.) The conditional intensity associated with f)(;_} is

. X | X
255010 = (3 B ()

The density of X, with respect to IT is

—ky ok L
X-(x) — e(]—( )Y (L.')C)C AH(X)f(C,)(x)~ x € ch’
¢ X

where n(x) is the number of points in x.

3. Local scaling of homogeneous point processes

In this section, we give a general definition of a locally scaled version of a homogeneous
template process.

The concept of scale invariance plays a crucial role in the definition. This~ concept relates to
global scaling with a constant factor ¢ > 0. Note that, under scaling with a factor ¢, a measure
w on (R¥, By) is transformed into p, where uc(A) = u(c~tA) for A € Bi.

Definition 1. Let g(x; u*) be a real-valued measurable function defined on Qg+, dc?pend.ing
onaset u* = (u', ..., u™) of measures on (RF, By). The function g is called scale invariant
if, for all x € Qp« and all ¢ > 0,

glexs ) = glxs 1),

where p* = (ul, ..., pu).

The classical homogeneous point process models that appear inthe spati.al statistics*lltera;lure
have a density which is the restriction to Qx of a scale-invariant fUﬂ(EFlOIl g+ [‘L )‘} w ﬂ%e
w* = v* = (vo vk) is the set of d-dimensional volume (Hausdorft) meas.ures v }n R
d = 0,1,.... k. A comprehensive set of examples will be givlen in the sections to tgll%»:.
Recall that v0 is the counting measure, thus v0(x) = n(x),and v' is the length measure in R".
Note also that v (A) = v/ (c7'A) = c=4vd(A) for A € By. b e ecation

i ing f: i a nonconste -

Under local scaling, the constant scaling factor ¢ 15 replaced by ' O ensily be
dependent scaling function ¢ : R¥ — R,. The globally scaled measures v, ¢
extended to this case.
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Definition 2. Let ¢ be a positive Borel measurable function on R¥. Then the locally scaled
d-dimensional volume measure v¢ is defined by

vi(A) = / c(w)™v? (du)
A

for all A € B;.

In the following, we will assume that ¢ is bounded from below and above, i.e. there exist
c,csuchthat0 < ¢ <c(u) <t < ooforu e R¥. This assumption implies in particular that
v4(A) < oo whenever v¢(A) < oo.

We can now present the definition of locally scaled point processes.

Definition 3. Let X be a homogeneous point process on X, with density fy with respect to I1
of the form

fx(x) o gx; v), x € Qx,

where g is scale invariant. Let ¢ be a positive, Borel measurable function in R* and let 1. be
the Poisson point process with the locally scaled volume measure vf as intensity measure. Let
X' € B* be arbitrary and suppose that g(-; v}) is integrable on Qy with respect to I[T.. A
locally scaled point process X on X' with template X is defined by the following density with
respect to I,

f}é’(X) xglx;vy),  xeQx,
where v} is the set of locally scaled volume measures.

If c : R* — R, is constant, c(u) = c, say, then the density with respect to IT,. of the scaled
process on X' = ¢ X becomes

@ acgv) = ge v, x e Qo

Local scaling with a constant scaling function is thereby equivalent to global scaling. In the
general case where ¢ is not constant, local scaling does not necessarily correspond to a mapping.
Therefore, there is no natural choice of X’ which is related to XC, and the set X’ can be arbitrary.
In particular, we may choose X’ = X. Note that the density of the locally scaled process X,
with respect to the unit rate Poisson point process I1 is

fxo) o £ o) [T e ™.

XEX

Locally scaled Markov point processes are again Markov, but now with respect to a relation
~c Which in general is different from the template relation ~. Local scaling of two general
Markov model classes, distance-interaction processes and shot noise processes, is discussed in
detail in Sections 4 and 5. For these classes, conditions on the scaling function which ensure

?ntegrability of g(-, v}) will be given, and it will be shown that the Papangelou conditional
intensity of the locally scaled process,

AU

A - T (c)
MoGln =1 fonT xe (>0

0, otherwise,
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satisfies a local analogue of (1),

X

x(§j(x|x)=xx(c~(5

x ) ,
clx) )’ (=)

if ¢ is constant in a ~~.-neighbourhood of x. The locally scaled processes thereby behave locally
like a scaled version of the template process and the local geometry is preserved. In particular,
if the template is locally isotropic in the sense that Ay (x | -) is invariant under rotations around
x, then so is the locally scaled process. Indeed, let R, be a rotation around x. Then

(c) X | Rux . u
A Ryx) = Ax| —= =ix{=5 R P
x| Rex) X(C(x) c(x)) X(C(A‘) Rxm”(t‘(-"),))
_ AX(_i‘_ L) =29 x). 3
c(x) | clx) X

Remark 1. The representation g(x; v*) of a given function f : Qx — R is. in general. not
unique. Therefore, a given homogeneous template process does not correspond to a unique
locally scaled process. For instance, the simple neighbour relationu ~ v <= vlu v < r
indicating that two points u and v are less than a distance r apart could also be written as
u~v & vibu, r/2) N b(v, r/2)) > 0, which means that the balls of radius r/2 around
the points have nonempty intersection. In order to find a natural extension of a homogeneous
template to a locally scaled process, we recommend that the simplest possible representation
of the density function be used.

4. Distance-interaction processes

In many Markov point process models, higher-order interactions are functions of pairwise
distances. The densities are of the form

fx(x) = nw(D(y)), 4

ycx
where D(y) = y if n(y) < 2 and, for n(y) = 2,
D(y) = (' (. v : fu. v} Sy, w # v}

denotes the set of all pairwise distances of points in y, with [.u. v] be_ing the_lme segn\xven‘t
connecting the points « and v. Such processes shall be called dzstance-mtemumyz prm-c.s..\ei\i
This class includes pairwise interaction processes, such as the hard-core process and the Strauss
process, as well as higher-order processes, €.g. the triplets process [S]. 1 R

Assume that @ ({x}) = B and that p(D(y)) = 1 forn(y) = 2 unl'ess vi(luoeh) £ fl(.)l‘.d
{u, v} € y. The process X is thereby homogeneous and Markov with respect to the relation
u~v <= viuvh)=r

According to (4), fx(x) o g(x; v*) for x € Qx . where

gl vy = B2 [T ot (v s v} €y 20D

ycox

and y C» x is short for{y Cx: \)O(y) > 2}. The function g is clearly scale invariant.
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FIGURE 4: (a) Homogeneous template Strauss process X on X = [—1, 1] with parameters = 200, y =
0.1,7 = 0.1. (b) Inhomogeneous Strauss process X on X’ = [—1, 1]? obtained by local scaling of X
with c(u) = 0.1 + fju)|%

If o(D(y)) < 1 for n(y) > 2, then X is repulsive since each clique y € x contributes
a penalty ¢(D(y)) to the density. In this case, g(x;v}) < p"*) for any scaling function
¢:R¥ - R,. Hence, g(-; v}) is integrable on Qy for any X' € B and, therefore, locally
scaled versions of such processes do exist. Otherwise, integrability has to be proved case by
case and may require certain restrictions on the scaling function ¢. The locally scaled process
has a density of the form

£ o B2 T oDy, x € 20,

ySox
where De(y) = {v!([u, v]) : {u, v} € y. u # v}.

Example 1. (Strauss process.) A Strauss process X on X C R* with intensity parameter
B > 0, interaction parameter y € [0, 1] and interaction distance r has density

#
fx@) o prOY sy = Y A v <), x € Qu,
{u,vicx
where s(x) is the number of r-close pairs in x [15]. (The superscript # in the summation

indicates that u and v are different.) For y = 0 we obtain the hard-core process, for y = 1 the
Poisson point process with intensity 8. The locally scaled Strauss process has density

+
f;(i)(x) o Brx)ysex) se(x) = Z 1w} ([u, v]) < r), X € Q.

{u.v}Cx

Figure 4 shows a realization.

The locally scaled process is Markov with respect to the relationu ~ v <= vg ([, v]) <r.
Thus, the shape of the neighbourhood
dc(x) = {y 1 vp([x,¥]) < r}=b.(x,r)

in the locally scaled process depends on the scaling function ¢. It is not necessarily convex
but always star shaped; see Figure 5. A neighbourhood 3. (x) is called star shaped if it is star
shaped with respect to x, which means that, if u € 8.(x), then [x, u] € 8.(x).
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FIGURE 5: Neighbourhoods of four points in a locally scaled distance-interaction process, with scule factor
¢ = 1 in the left half and ¢ = 2 in the right halt of the domain.

In regions where c is constant, the neighbourhood 8. (x) = b (x. 1) is ball shaped and thus
similar to the neighbourhood 3(x) = b(x, r) in the homogeneous and isotropic template: see
Figure 5. More precisely, we have the following result.

Proposition 1. If c(u) = ¢ for all u € b(x, cr), thenb.(x.r) = b(x.cr).
Proof. With straightforward calculations it can be shown that v € b(x.¢r) implies that

v € bo(x,r)and v ¢ b(x, ¢r) implies that v € be(x,r).

Locally scaled distance-interaction processes have the desired property that in regions where
¢ is constant the process behaves like a scaled version of the template process.

Proposition 2. Let X be a distance-interaction point process with conditional intensity i x.
Suppose that ¢(u) = ¢ for all u € b(x, ¢r). Then the conditional intensity of the locally scaled
process X is given by

xg(“j(.x|x)=xx(" ”‘ﬁ)

¢
Note that ¢(x) = ¢ under the assumption.
Proof. First notice that the assumption implies that b(x. ér) = b.(x.r):see Proposition 1.

The conditional intensity of the locally scaled process is of the form

A x) =8 [ ety Ui,

ySix

where y C; x is short for {y € x :n(y) 2 1}. Suppose that y € b(x.cr). Since

u v

ol (i) = &t v = ([ 3 z]) for any u. v € bLx.¢r).

¢

we get De(y U {x}) = D(y/EU /&)
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On the other hand, suppose that there exists a # € y such that u ¢ b(x,cr). Thus,
v} ([u, x]) > r and therefore (D.(y U {x})) = 1 = @(D(y/¢ U {x/c})). It follows that

=8 [Te(o(2u(3]) =2(3] )

ySix

5. Shot noise weighted processes

Shot noise weighted processes are based on geometric quantities other than pairwise dis-
tances. Write Cy (1) = erx 1(u € b(x, r)) for the template coverage function. Then a shot
noise weighted point process with potential function p(-) is defined by

Fx(x) o grx)y = pCrtntidn, x e Qx, (5)

where y > 0 and p is a function on the nonnegative integers Ny with p(0) = 0. The integral
fp(Cx(u))v"'(du) is taken on all RX. The special case p(n) = 1(n > 1) is known as an
area-interaction point process [1].

The interaction function of a shot noise weighted process is

By ™", n(y) =1,

(ﬂ(y) = [y—-m(y). n(y) > 1’

where
X (ny)
_ .k 5 n(y)—I .
m(y) = b(y, - 1);
¥ =v (ﬂ (v ”>)Z< : >( D" pa)
YEY I=1
compare with Theorem 3.3 in [17]. As usual, ¢(2) is the normalizing constant. Homogeneous
shot noise weighted processes are Markov with respect to the overlapping objects relation

u~v & bu,r)Nb,r)#3 < |u—v| <2r,

vhich means that the neighbourhood of a point is a ball with radius R = 2r.
It is easy to show that

glx: v¥) = ‘Bvo(x)y—f P rex 10N ([x uD 2r))vk (du)
:ale invariant. The locally scaled shot noise weighted process has density
Fi) @) o gxivg) = prely =S pCoxi@o e ©
1scaled coverage function C, () = erx 1(u € bo(x,r)).

van Lieshout and Molchanov [17] show that (5) is integrable if there exists some constant
with 0 < C < oo and

|p(n)] < Cn foralln € Ny. 7
v similar result holds for the scaled process.

Proposition 3. Under the condition (7), g(-; v}) is integrable on Q. for any X' € B* and
hence the locally scaled process defined by (6) does exist.
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Proof. We show that there exists an M > 0 such that g(x; v¥) < M"™) forall x € Q.
This is fulfilled if

I/Rk p(Cex W)VE(dw)| < M'n(x) (8)

forsome 0 < M’ < ocoand all x € Q.
Let Sc(x) denote the support of C.. . As C. () < n(x), we have

< Cn(x)vE(Sc(x))

/ P(Cex () V¥ (due)
]Rk

with C asin (7). Since Sc (x) = U ¢, be(x. 1) € X' ®b(0, Tr), where & denotes Minkowski
addition, and vX(B) < ¢~*v¥(B) for all B € By, (8) holds with
M’ = Cc™MvR (X @ b(0, Tr)).
The locally scaled shot noise weighted process has the interaction function

ﬂy_"“'(y), n(y) =1,
y—m('(y)’ n(y) >1,

c(y) = I

where
n(y) n(y)
me(y) = vf(ﬂ be(y, r)) Z( ] )(—1)"(y)—[p(l).
YEY =1

It follows that X is Markov with respect to the overlapping objects relation
U~ v & bo(u,r)Nbe(v,r)# @ < Jw: vg([u, w]) <ra v}.([w. v]) <

The neighbourhood of a point x is
de)=|J betw.r).
web (x.r)

which in general is not ball shaped, but contains all points that are 2r-close to x with respect to
v}. Additionally, it is possible that two points are neighbours in X, although their scaled distance
is larger than 2r, since the triangular inequality does not necessarily hold for scaled distances
defined by v!. However, in analogy with the results obtained for the distance-interaction
processes, the following proposition holds.

Proposition 4. For a shot noise weighted process, if
cu) =¢ forallu € bix,2cr),

then
d.(x) = b(x, 2¢r).
Proof. Consider w € b.(x, r). Then b(w,cr) C b(x,2cr) énd thus c(y) = ¢ for all u €
b(w, ér). Therefore, Proposition 1 yields that b.(x, r) = b(x,ér) and be(w, r) = b(w. cr),

and hence _ -
9e(x) = U be(w, r) = U b(w, ¢r) = b(x., 2cr).

web (x,r) web(x.['r)
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If the scaling function is constant in a neighbourhood of a point x, then the conditional
intensity of a locally scaled shot noise weighted process again behaves as though it is under
global scaling.

Proposition 5. Ler X be a shot noise weighted point process with conditional intensity Ax.
Suppose that c(u) = ¢ for all u € b(x.2cr). Then the conditional intensity of the locally
scaled process X is given by

X | X
)\.(;)‘(.Xlx) =)nx<: ' ‘.:).
¢ Cc Cc

Proof. Since the conditional intensity can be written asa product of interactions, Ax (x | x) =
[Tycxnac @y U {x}), we only need to show that

[T evih= T[] w(yUE{X})

YCXNd,(x) Y/ECx [EN3(x/¢)

This is fulfilled if m.(y U {x}) = m((y U {x}/&)) for finite y C 9.(x), y # &, ie.if
vf( ﬂ be(z, r)) = vk( ﬂ b(z, r))- €

zeyUix} ze(yUix /¢
By the assumption, v.([z, w]) = & ly([z, w)) for any w, z € b(x,2¢r). Thus, for all z €
9-(x) = b(x.2¢r) (Proposition 4), we have

w € b(z,r) N be(x,r) & w € b(z,ér)Nb(x,cr).

Therefore, b.(z.r) N b.(x.r) = b(z.cr) N b(x, ér) and

N b= [) b= (| ébn,

zeyUlx} zeyUix} ze(yVixh /¢
which immediately leads to (9).

Remark 2. In the present section, the focus has been on local scaling of homogeneous shot
noise weighted processes defined using balls b(x, r). It is possible to define a more general
type of homogeneous shot noise weighted process with b(x, r) replaced by x + Z, where Z is
an arbitrary bounded subset of R¥. Expressing Z with generalized radius-vector functions, the
homogeneous template process can easily be generalized to local scaling.

6. Approximation of local scaling

For simulation of locally scaled Markov point processes using, for example, the Metropolis—
Hastings algorithm (see [5]), expressions of the form g (x; v¥) have to be evaluated. This usually
involves integration with respect to scaled d-dimensional volume measures vf_[ . In the locally

scaled distance-interaction processes introduced in Section 4, for example, we deal with scaled
distances

vl (lu, o) = f cw) ™ dw = [lu — vlc(u, v),
[u,v)

where ¢! (i, v) is the integral mean of the inverse scaling function w — 1/¢(w) on the segment
[u, v].
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For certain scaling functions ¢, such integrals can be expressed explicitly. However. if we
strive to design programs that handle arbitrary scaling functions, we would have to resort to
numeric algorithms. Time-consuming calculations can be avoided by defining approximately
scaled processes that require only pointwise evaluation of the scaling function.

Markov point processes comprise a large variety of models that are essentially different
to each other, for example, with respect to the order of interaction, or to the dimensionality
of volume measures involved in the definition of their density. There is no best recipe for
approximate local scaling of all possible models. A general method for pointwise local
scaling of Markov point processes, based on averaging the interaction functions, is presented
in Subsection 6.1. Tailor-made, more intuitive approaches for distance-interaction processes
and shot noise weighted processes are suggested in the following subsections.

6.1. Local scaling by ¢-averaging for Markov point processes
In order to restrict the evaluation of ¢ to the points in the pattern x = {xj...... Xl we

interpret local scaling as an average of global scalings with scaling factors ¢(xy). ... . c(xy). In
the context of finite-order interaction Markov point processes where ¢(y) = 1 if n(y) > m for
some m < 00, we propose to construct the density of the locally scaled process from averaged
interaction functions. Doing so, cliques y are only influenced by their own scaling factors. and
not by scale factors from points outside y. Thus, the paradigm of local interaction is preserved.
Locally scaled interaction functions are defined as the geometric mean of the corresponding
interactions in globally scaled patterns,

y 1/n(y)
D = _— \ > 1. (10)
©c(y) (H w(c(y))) n(y) >

Y€y

Thus we obtain the density f}‘() by local p-averaging as

F00 o [T e
yeix
where y < x is again short for {y € x : n(y) = 1}. The use of the geometric mean in (10}
is motivated by the fact that interaction functions are usually of the form @(y) = exp(—p(y)).
where p(-) is the so-called potential function. This notion stems from statistical physic:_a. where
Markov point processes were first described as Gibbs processes. Taking the geometric mean
of ¢ means taking the arithmetic mean of the potential function,

. . 1 oy -
pe(y) = eXP(*W zp<(_()_)))» n(y) =

yey

The following example of a Strauss process shows how this concept is applied to a distance-
interaction process.

Example 2. (Strauss process, continued.) An approximately locally scaled Strauss process X,
obtained by @-averaging has second-order interaction

- /2 Au=vl gcton+1u—rl gewr)
@c{u,v}) =y /

~

Therefore, the density takes the form [ (x) o "'y %!, where §c(x) is calculated from
the number of neighbours given by the directed relation

U~ v = Jlu-—vll <cur
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The number of directed neighbours divided by two,

#
1
S. = —(1 ~ 1(v u)),
= Y S0+ 1@~ w)
{u.viCx
can be considered as an approximation of the true number s¢(x) of neighbours under local
scaling; compare this with Section 4.

6.2. Local scaling by c-averaging for distance-interaction processes

Locally scaled distance-interaction processes as introduced in Section 4 require only the
calculation of scaled pairwise distances vtl. (lu,v]) = Z:T(u, v)|ju — v|. A natural idea is to
replace the integral mean T, v) by a simpler mean 1 (u, v) of the inverse scaling factors

cu)~Vand c(v)~!. We propose to use the harmonic mean ¢ Hu,v) =2/(c(u) + c(v)). The
original neighbour relation u ~. v <= v('.([u, v]) < r is thus approximated by

u~;v &= Jlu—-v| < %(c(u) + c())r. (1D

This relation allows for a nice geometric interpretation. Two points u, v are neighbours if and
only if the balls b(u, %c(u)r) and b(v, %c(v)r) overlap. Note that (11) actually means that the
scaling function c itself is locally replaced by the arithmetic mean %(c(u) + ¢(v)). Therefore,
we call this approach local scaling by c-averaging. i

Example 3. (Strauss process, continued.) As for p-averaging, the density of an approximately
locally scaled Strauss process obtained by c-averaging is of the form

#
f(L)(x) x ﬂn(x) y""(“, Ae(_(x) = Z 1(u ~: V), X € Q.

{u.vjiCx

Now, §.(x) is the number of neighbour pairs with respect to the approximate neighbour relation
~: given by (11).

6.3. Local scaling by influence zones for shot noise weighted processes

Shot noise weighted processes as defined in Section 5 require the evaluation of the coverage

tunction C. x (1) = Z.\.EX 1(u € b.(x,r)), which gives the number of ‘influence zones’ b (x, r)
covering a point u.

In Proposition 1 we saw that b, (x, r) = b(x, ér) if c(u) = & = c(x) forall u € b(x, cr) =
b(x, c(x)r). Assuming that ¢ does not vary very much in b(x, ¢(x)r), we can use this result
If) approximate the influence zones by b.(x, r) & b(x, c(x)r) and thus obtain the coverage
function C¢ x (1) = Z.\- ex 1 € b(x, ¢(x)r)). Calculating the density function

f(")(x) o g1y =S p(Cexw)vl(du)

still requires integration with respect to the locally scaled measure v . But even when dealing
with homogeneous processes, the 1ntegral f P(Cex(u)) du is usually approximated by grid
methods. Once the coverage function C( x () is known, evaluating

/R . P(Cox()vF(du) = /R ) P(Cox ))e(u) vk (du)

is therefore no bigger a problem than evaluating the corresponding integral in a homogeneous
(template) setting.
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7. Sequential local scaling

A sequential point process X on X € BF is a random variable taking values in Q x. the
set of all finite sequences ¥ = (xy, ..., x,) of points in X. The set Q; x is equipped with the
o-algebra F; x generated by the Borel o-algebras B, on X", In the following, we will consider

sequential point processes that have a density f  Wwith respect to the probability measure i on
Q,x, where, for all F € Fg «,

O e—vh(X)

W(F) = // 1((x1, ..o, xn) € F)dof(xp) ... dv¥ (xy).

This measure on the space (24, x, F5,x) of sequential point sets corresponds to the unit rate
Poisson point process for unordered (nonsequential) point processes on (Qx. Fs x).
For sequential point processes, the Papangelou conditional intensity,

f)?(xlw--vxn«x) .

e fr(x1, . ) >0,

Al () =4 fyGnx) 0K ! (12)
0, otherwise,

gains a particularly intuitive meaning, since A z(x |i)vk(dx) relates to the conditional proba-
bility of adding a new point x in a region d.x to an existing sequence X = (x,....2 Yp)-

In analogy to hereditary (unordered) point processes, we define hereditary sequential point
processes as follows.

Definition 4. A sequential point process X with density fy is called hereditary if fg(x;
xn) > 0 implies that f(y) > 0 for all subsequences yof (x1,...,xp).

.....

If a sequential point process is hereditary, then, as a consequence of (12), the density can be
written as

n
Frxr, ooy xn) l—[)x;((xj X)), Xej= (X1, ... Xj1).
j=1

This gives rise to a straightforward idea of defining local scaling in the sequential context
by means of locally scaled conditional intensities. We start again with a homogeneous, now
sequential, template process X, which means that fi and, hence, A are translation invariant
and in principle defined for any finite point sequence in RF. Motivated by the effect of glot.»al
scaling on the conditional intensity, cf. (1), we require that the Papangelou conditional intensity
of the scaled sequential process X, fulfils

() 2N 9 - X
)”)?,-(x |x) = AX(C X)

i.) (13)
c(x)

where ¢ as before is a measurable, bounded scaling function that is !Dounded away ﬁ.rom 0.
Note that, for locally scaled unordered point processes, the corresponding property (2) is only
fulfilled in regions where the scaling function ¢ is constant.

Definition 5. Suppose that X is a homogeneous hereditary sequential pgint process on X wi'th
Papangelou conditional intensity A5 given by (12). Let u. be the distribution of a sequential
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Poisson point process with the locally scaled volume measure vk as intensity measure, and let
X’ € B* be arbitrary.
Then the locally scaled sequential point process X, on X' with template X is defined by the

density )
FFuCIIe x,,)cxl‘[ ( x<f) (14)

c(xj)
with respect to (., provided that f;(C is mtegrable on Q2 x.

c(xj)

Sequential templates can easily be obtained from homogeneous unordered point processes,
since any unordered point process X on X with adensity fx with respect to the unit rate Poisson
point process can be converted into a corresponding ordered point process X by defining the
density f5 with respect to u as

f)—((xl. ceesXn) = fxxp,.o.o, Xn ). (15)

This means that every permutation of X has the same density; see also [4, p. 122]. We shall
refer to the process X with density (15) as the sequentialized version of the process X.

Clearly, the sequentialized process X is hereditary if the unordered process X is hereditary.
Combining (12) and (15), the Papangelou conditional intensity of a sequentialized process
becomes Ag(x|x1,..., %) = Ax(x|{x1,...,x,}). Thereby, the Papangelou conditional
intensity of the corresponding locally scaled point process X, is

_x_)
cx) )’

35L). (16)

c(xj)

X

A(‘)(,\|x)—kx(

c(x)

cf. (13), and the density (14) of X - becomes
), .. j
T (rsesxm) H (c(x,

The locally scaled process X ¢ 1s locally stable, i.e. X()-;) is bounded above, if the homogeneous

unordered template X is locally stable, i.e. if Ay is bBunded above. Then (16) is integrable.
As before, a constant scaling function simply yields a globally scaled sequential point process.

Note in particular that a locally scaled sequential point process is isotropic in the sense of (3)
if the template is isotropic.

Example 4. (Strauss process, continued.) For a Strauss process X, Ay(x |x) = Bysx)

where 5(x; x) = s(x U {x}) — s(x) denotes the number of points in x that are closer than r to
the new point x & x. Here

f)(_{c)(xL -xn) x ,3" Selxy,. r,,)’
with

Xj Xi

sL.(xl,...,x,,)=Zl< —_

oy clxj)  clxj)

= Z l(xj ~e Xi),

i<j

<r)
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where
XjweXxi = lxj —xill < clxj)r

This is the same directed neighbour relation as in p-averaging, see Subsection 6.1.

Specializing to the hard-core model (y = 0), we obtain a sequential inhibition model in

which each point upon arrival keeps a distance c(x j)r away from previously arrived points; see
also [3].

8. Discussion

Inhomogeneity in natural structures may be caused by very different mechanisms. Cor-
respondingly, there is a myriad of ways to define inhomogeneous models. Therefore, some
restrictions have to be introduced that replace the usual homogeneity condition. The three
models for inhomogeneous point processes described in the introduction stand for three different
situations. In the first model, the interaction between points is independent of location. In the
second model, inhomogeneity results from a (physical) location-dependent thinning, and in
the third from (physical) deformation of the matrix. In this paper, we introduced yet another
approach which yields models for patterns that are homogeneous up to a local scale factor.
Such point processes may describe a spatial arrangement of spheres with diameters that vary
with location, see Figure 1, or situations where both intensity and interaction are governed by
the same external factor, such as desert plant communities that are ruled by water supply.

When it comes to choosing an appropriate model for a given situation, there will sometimes
be prior information about the physical genesis of the patterns that strongly suggests one of the
approaches. In general, however, it will be necessary to define criteria for the best choice which
can then be used to develop model tests. These criteria will strongly depend on the modelling
purpose. Often it is desirable to pick the model that reflects best the local arrangement of
neighbouring points. Therefore, a test on the local scaling assumption could exploit scale-
invariant local geometric properties, as, for example, shape factors of corresponding Voronoi
cells. Statistical inference will be studied in detail in a forthcoming paper.

The intensity A.(x) of a globally scaled point process is proportional to the intensity A Qf the
template, A.(x) = ¢ *x(x/c) = ¢7FA, since the intensity of a homogeneous templa-te is ap-
proximately constant. Analogously, the intensity of a locally scaled process is (approximately)

Ae(x) & c(x) A a7

This allows us firstly to model practically any inhomogeneous intensity an'd‘ secondly, to retrieve
the scaling function (up to a proportionality constant) froma given or f:stlm‘ated d~ens'1ty. In this
aspect the scaling function plays a similar role to the survival probability ot the‘thmmng model.

Once the scaling function has been estimated, it canbe used to supsequenFly -ht the parameterf
of the template process and thus to complete the model speciﬁcatlon.. A similar approach has
been followed by Nielsen and Jensen [11] for fitting the trgnsfoynauon model. Furthermon:t
possible empirical relations between an estimated scaling tunc‘uon an(:i gxplanalory Yanables
such as water supply in the desert vegetation case can be used for prediction purposes.

Future work will concentrate on validating the approximation (17) as wel.l ason development
of model tests and other statistical methods. Moreover, the idea of local scaling will be extended
to other random sets.
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